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• W prompt redeposition scales with the ionization mean-free path over the sheath 

width → new scaling law for W prompt redeposition
• Reduction of SXB coefficients for W at high plasma density  

• Experiments available in DIII-D to validate model of W prompt redeposition and net 
erosion in divertor
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• W prompt redeposition is usually large (~1) in
attached plasma conditions and determines the
overall W net erosion

1 J.N. Brooks PoF 1990 2 G. Fussmann Proc. 15th Int. Conf. IAEA 1995 3 D. Rudakov PS 2014 
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in divertor

Quantitative Modeling of W Prompt Redeposition Including Chodura
Sheath and Multiple W Ionizations Required for ITER and Beyond

• W prompt redeposition is usually large (~1) in
attached plasma conditions and determines the
overall W net erosion

• Effects of electric sheath and multiple W
ionizations on W prompt redeposition qualitatively
described by Brooks1 and Fussmann2 in 90’s …

1 J.N. Brooks PoF 1990 2 G. Fussmann Proc. 15th Int. Conf. IAEA 1995
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≈ gross erosion x (1- prompt redeposition) x (1 – non-prompt local redeposition) W erosion 
in divertor

Quantitative Modeling of W Prompt Redeposition Including Chodura
Sheath and Multiple W Ionizations Required for ITER and Beyond

• W prompt redeposition is usually large (~1) in
attached plasma conditions and determines the
overall W net erosion

• Effects of electric sheath and multiple W
ionizations on W prompt redeposition qualitatively
described by Brooks1 and Fussmann2 in 90’s …

• ...but ITER W divertor and beyond now requires:
i) Quantitative modeling of W prompt redeposition:

→ Quantify effects of sheath and multiple W ionizations on W prompt redeposition
ii) Validation of predictive model of W prompt redeposition against experiments:

→ Dedicated experiments in DIII-D divertor3

1 J.N. Brooks PoF 1990 2 G. Fussmann Proc. 15th Int. Conf. IAEA 1995 3 D. Rudakov PS 2014 

W

Tungsten

+

λ'()*%(

B~B%
++

+++

𝐄

019-19/JG/jy



W Ionized within the Sheath Due to Large Width of Electric Sheath in 
Presence of Magnetic Field Line at Grazing Incidence

3

• Wide electric sheath (Chodura sheath) due to
grazing magnetic field (< 𝟓°) in divertor1:

𝛌𝐬𝐡𝐞𝐚𝐭𝐡~𝛒𝐢

1D. Ryutov CPP 1996

W

Tungsten

+

λ'()*%(

B~B%

λ78

𝐄

019-19/JG/jy



W Ionized within the Sheath Due to Large Width of Electric Sheath in 
Presence of Magnetic Field Line at Grazing Incidence

3

• Wide electric sheath (Chodura sheath) due to
grazing magnetic field (< 𝟓°) in divertor1:

𝛌𝐬𝐡𝐞𝐚𝐭𝐡~𝛒𝐢
• Sheath electric potential from kinetic simulations 2,3

1D. Ryutov CPP 1996  2D. Coulette PPCF 2016 3D. Tskhakaya JNM 2015
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λ78O/λ'()*%( (ADAS)

→ Neutral W ionized in the sheath: 𝛌𝐢𝐳 ≲ 𝛌𝐬𝐡𝐞𝐚𝐭𝐡
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W Prompt Redeposition Strongly Enhanced by the Sheath Electric Field 
Because of The Large Inertia of W Impurity 

• When W ionized within the sheath (𝛌𝐢𝐳 < 𝛌𝐬𝐡𝐞𝐚𝐭𝐡 ), W prompt redeposition affected by
Chodura sheath due to:

• increase of 𝛌𝐢𝐳 due to the decay of n) in the sheath

• acceleration of impurity toward material surface by the sheath electric field
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W Prompt Redeposition Strongly Enhanced by the Sheath Electric Field 
Because of The Large Inertia of W Impurity 

• Sheath electric field strongly enhances W prompt
redeposition and has stronger effects than multiple W
ionizations and decay of 𝐧𝐞 in the sheath

• Electric field remains much stronger than Lorentz
force despite high W charge state due to large W
mass
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W
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>
_
T
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W Prompt Redeposition Scales With the Ratio of the Neutral W Ionization 
Mean-free Path Over the Sheath Scale Length

• Only W impurities ionizing out of the sheath do
not promptly redeposit because of the strong
sheath electric field (ERO simulation)
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W Prompt Redeposition Scales With the Ratio of the Neutral W Ionization 
Mean-free Path Over the Sheath Scale Length

• Only W impurities ionizing out of the sheath do
not promptly redeposit because of the strong
sheath electric field (ERO simulation)

• W prompt redeposition scales as the W neutral
ionization mean-free path over the sheath width
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W Prompt Redeposition Governed by W Ionization Rates, Sheath Width 
and Energy Distribution of Sputtered Neutral W
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and Energy Distribution of Sputtered Neutral W

• New scaling law of W prompt redeposition with 𝛌𝐢𝐳
𝟎e→𝟏e

𝛌𝐬𝐡𝐞𝐚𝐭𝐡
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• W prompt redeposition governed by W ionization rates, sheath width and energy distribution
of sputtered neutral W
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• W prompt redeposition governed by W ionization rates, sheath width and energy distribution
of sputtered neutral W

• W prompt redeposition weakly depends on shape of sheath electric potential, potential drop
in the sheath (in the regime 𝛔𝐖 > 𝟏) and incidence of magnetic field on divertor target

6 019-19/JG/jy



• W gross erosion flux given by ΓO)pq = ∫l
� S78O

ie→OWe
T), n) nOie n) dz

but only photon flux measured in experiments…
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Reduction of the effective SXB coefficients at high 
𝐧𝐞 due to W ionization within the electric sheath2



Experiments Available in DIII-D Divertor to Validate Model of W Prompt 
Redeposition and Net Erosion In Divertor

1 D. Rudakov PS 2014 2 J.Guterl PPCF 2019 3 R. Ding NF 2015  
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=
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𝒔𝒎𝒂𝒍𝒍

• Experimental validation of model for W prompt redeposition
and net erosion through comparison of net erosion from small
and large W dots exposed in DIII-D divertor with DiMES1
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• Strong dependence of fraction of redeposited W ξp)�)o
on R�7'� when R�7'�~ λp)�)o~1mm
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• Reduced model for ξp)�)o in good agreement with
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conditions 2 and with comprehensive ERO model 3…

• … but additional experiments required to provide
quantitative assessment of critical parameters controlling
W prompt redeposition and net erosion (W ionization rates
and sheath width)
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• Sputtered neutral W are ionized within the electric sheath in divertor (Chodura sheath)  
• W prompt redeposition scales with the ionization mean-free path over the sheath width 
–New scaling law for W prompt redeposition
–Reduction of W SXB coefficients at high plasma density  

• W prompt redeposition mainly determined by W ionization rates, sheath width, and energy of 
sputtered W
– First-principle models available for the sheath width in divertor
– But robust first-principle estimations of W ionization rates remain to be completed 1,2

• Experiments available in DIII-D divertor to analyze and assess validity of W ionization rates, 
sheath width, … 

Conclusions
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Thank you for your attention!
1 R. T. Smyth Phys. Rev. A 2018
2 C.A. Johnson PPCF 2019 019-19/JG/jy
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experimental measurements in various plasma
conditions 2 and with comprehensive ERO model 3…

• … but additional experiments required to provide
quantitative assessment of critical parameters controlling
W prompt redeposition and net erosion (W ionization rates
and sheath width)
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• Experimental validation of model for W prompt redeposition and net
erosion through comparison of net erosion from small and large W
dots exposed in DIII-D divertor with DiMES1
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